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R E S U L T  O F  T H E  I N T E R A C T I O N  B E T W E E N  A S H O C K - W A V E  

A N D  A C L O U D  O F  P A R T I C L E S  

S. P. Kiselev and V. P. Kiselev UDC 532.539 

In this paper we investigate the interaction between a shock-wave and a rarefied cloud of particles of finite dimensions. 

It is shown that, for a subsonic flow of the gas, acceleration of the gas into the cloud of particles occurs behind the shock-wave, 

while at supersonic velocities the gas is slowed down. The results of calculations are compared with experiment on the slowing 
down of a supersonic flow in a cloud of particles. 

1. Consider a cloud of spherical particles on which a shock-wave is incident from the left (Fig. 1, where x +, x 0, and 

x o + h are the position of the shock-wave and the left and right boundary of the cloud, respectively, h is the thickness of the 
cloud, and (m 2 - 10-3), are the regions occupied by the gas and the gas with the particles). It is required to calculate the flow 
of gas and the particles which occurs as a result of interaction between the shock-wave and the cloud of particles. In this paper 

the motion of the gas and the particles is described by the model of interpenetrating continua [1, 2]. The volume concentration 
of the particles in the cloud is assumed to be small (m 2 - 10-3), and the particles are therefore described by the collisionless 
kinetic equation, while the gas is described by the equations of a dust-containing gas. This model was investigated in detail 

in [I, 2], and the system of equations in the one-dimensional case has the form 

Of ~ f  Oaf Oqf 
0-7 + + + = o, 

f = f ( t , z , v~ , r ,  T2), n = f fav~ardT2,  
4/ 

m~ = ~ r ra f dv2 dr dT2, m l + ms = 1, 

t q - v ~  1 Op 1 3 RePCa(Re ,  M12), a - 

7"0 p2~ Oz' ro 4 p2~-~ 

0,43 ~ (0,38 + 24 4 Cd(Re, M,2)=(l+exp(-~i/;,,,2 ~ e +  ~ ) '  
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c,m-------~ ' = 

Pr = %t~ 09  OH 
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A1 = s Pml + v~ 
Pl " 2 '  r ----- c V T I ,  P = ( 7  - 1)Pl I~e l ,  

. t'igral . coral 
A2 = vl~l -~ Pl,--ffi- ~- vl Oz ) - e~2, 

~1 -- V2 Oral + f my __~o y dv2 dr dT2, 

- v2)2 - csq)f dvu dr dT2, '~2= f mp((Vl ro 

where v 1, P l l ,  Pl,  T1, P, 3,, s 1, ml  are the velocity, true density, mean density, temperature, pressure, adiabatic index, 

specific internal energy, and volume concentration of  the gas, v 2, P22, r, T 2, m 2, f ,  n are the velocity, true density, radius, 

temperature, volume concentration, distribution function, and countable concentration of the particles (the subscript 1 relates 

to the gas and the subscript 2 relates to the particles),/~, k,  a are the viscosity, thermal conductivity and velocity of sound in 

the gas, and Re, Nu, and M12 are the Reynolds, Nusselt and Math  numbers. The system of  equations (1.1) was solved 

numerically on a computer. The method of calculation is described in [3]; we merely note that the equations for the gas were 

solved on an Euler grid using an explicit scheme of  third-order accuracy, while the kinetic equation was solved in Lagrange 

variables with the first order of  accuracy. 

We took as the boundary conditions at the input and output of  the channel for the gas the condition of  symmetry of 

Vl, PI1, $ t, and for the particles the conditions of absorption. At the initial instant the the cloud consisted of  spherical particles 
(2) (3) 

of plexiglass and contained three fractions: m~ 1) = 5.10 - 4  and d I = 170 #m, m 2 = 10 -3  and d = 400/zm,  and m 2 = 

5-10-4 and d = 500/~m, where m(2 i) and d i are the volume concentration and diameter of the particles of  the i-th fraction. The 
3 

complete volume concentration of the particles m 2 = ~ m~ i) = 2 • 10-3 determines the fraction per unit volume occupied 
1 

by the particles. The particles of  all three fractions were uniformly distributed over the whole volume of the cloud. When t = 
o 

0 the transverse dimensions of  the cloud h = 1 cm, the temperature of the particles T 2 = 300 K, and the density of the 

particles of  plexiglass P22 = 1.2 g/cm 3. The parameters of the gas at t = 0 and x > x + where P0 = 0.1 atm and T O = 300 

K. 

2. We will consider two cases corresponding to a weak shock-wave with Mach number M o = 1.75 and adiabatic index 

3' = 1.4, and an intense shock-wave with M 0 = 4.5 and 3" = 1.347. For M o = 1.75 the flow of gas behind the shock-wave 

front is subsonic with Mach number M 1 = 0.81. As a result of the interaction with the cloud of particles the gas is slowed 

clown and the particles are accelerated. 

In Figs. 2-4 we show the velocity of  the gas v 1, the Mach number M 1 = vl/a and the pressure p as a function of the 

coordinate x at the instants of time t 1 = 80 #sec and t 2 = 160 #sec (curves 1 and 2) where M 0 = 1.75 (the vertical lines 

represent the left and right boundaries of  the cloud). It can be seen from the figure that slowing down of a subsonic flow in 

a compression wave occurs in front of  the cloud, while in the cloud itself it is accelerated in a rarefaction wave. The resultant 

slowing down is determined by the irreversible losses of the gas in the cloud due to friction and heat exchange. 

After a time t < 160/~sec the particles are no longer able to acquire velocity v 2 < < v l, and the cloud is hardly 

deformed. When M 0 = 4.5 the flow of  gas behind the shock-wave front is supersonic (M 1 = 1.86), and the flow pattern that 

occurs differs qualitatively from the subsonic case. 

In Figs. 5-7 we show v 1, M 1 and p as a function of  x at the instants of  time t 1 = 40/zsec and t 2 = 80/zsec ( c u r v e s  

1 and 2). The vertical lines indicate the left and right boundaries of the cloud at t I = 40/~sec and t 2 = 80/~sec, corresponding 

to the coordinates x i of the half-height of  the cloud. The volume concentration m 2 as a function of x at the same instants of 

time is shown in Fig. 8, whence it follows that the cloud is slightly deformed when t < 40/~sec and M o = 4.5. We can see 

from Figs. 5-7 that to the left of  the cloud the flow is unperturbed, and slowing down of the gas occurs in the compression 

wave which is formed inside the cloud. Behind the cloud a rarefaction wave occurs in which the supercompressed gas is 

accelerated up to the final state, determined by the irreversible losses in the cloud. Hence, in the case of subsonic flow the gas 

Ov 1 Ov 1 
in the cloud is accelerated [ ~  > 0 , while in the case of supersonic flow it is slowed down ax < 0 . 
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x *  x o x o  + h x 

Fig. 1 

3. To explain this effect we will investigate a simplified model in which we will neglect the motion of  the particles. 

The equations of  the flow of  gas will then have the form 

Opl OVl Cgpl Ot "1- Pl "~"x q- Vl "~"x = 0 '  P l = P l l m l '  

IOvl Ovl ~ = Op m2m(vl  - v2) 
P~ ~ - ~ i  + "~ "ff;~ J ~ ~" ' 

p rOPll 
S = cv  ln -~  + So, r =  ~'P22 

(3.1) 

where S is the entropy and S O is a constant. Considering the effect of the cloud as a small perturbation, we will expand the 

required functions in series in powers of m2~ 

~ = ~o + ~ ' ,  ~ =  {v~,p,p. ,T~,S}.  (3.2) 

o 
Here 'P0 are the parameters of  the gas behind the shock-wave and ~p - m 2 are the corresponding perturbations. Substituting 

(3.2) into (3.1) and retaining terms in the first power of ~o' we obtain 

i)p I i)v I Op' d o 
O---t + Po ~ + vo ~ + povo ~zz(ln mz) = 0, 

Or' Or' a~ Op' po OS' m~ 
0-7 + vo ~ + - -  + . . . .  , po ~ cvpo Oz r 

OS' c9S' m2v o ~  2 too(1 _ TO/T o) 

Ot + v~ ~ = rTo ~'  

o 
Outside the region occupied by the particles we must put m 2 = 0. Introducing the dimensionless variables ~/ = P'/P0, v = 

v ' /v  o, s = S ' /c  v and neglecting the term poVo d (In m~), in the equation of  continuity, we obtain 

I 0~ O~ O v  

vo a S + ~ + ~  =~ 

0-7 + vo ~zz + v o  0--~ = "rvo Oz j ~ ( ~ ( Y )  - ~(u - h))dy, 

/, Os O S = m ~ ( ~ ( 7 - 1 ) M '  1 - ~ / r O )  (,~(y) - ~(y - h))  dy, 
0-7 + ~o ~ r ~ , 

- - O O  

vo 4 d d 2poz cv 
M = - - ,  r = - ~  w -  - -  

ao 3 Cavo' 6ANu 

(3.3) 
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The system of equations (3.3) holds over the whole region of the flow - oo < x < + ~ ,  t > 0. The cloud of  particles 

occupies the region 0 < x _< h. Outside the cloud the integral of the difference of the delta functions is equal to zero, while 

inside the cloud it is equal to unity. Multiplying the first equation by a 0 and combining it with the second we can reduce system 

(3.3) to the following characteristic form: 

d • J+  ds j •  ao (3.4) 
=~a, - - = ~ b ,  = c + - - 7 1 ,  

dt dt vo 

d + d are derivatives along the characteristics of C• and Co: where ~ and d~ 

C •  z = ( v o 4 - a o ) t + ~ •  Co:  z = v o t + ~ o .  (3.5) 

The quantities ~ and ff were defined in (3.3) 

~o, = ,g os my ] (6(y) - 6 ( y -  hi) dy, 
7vo Oz '  42 = -'--~" 

- -  0 0  

~b: = m ~ 7(7 -- r 1)M2 ] (~fO1) - ~(y - h))  dv, 

~ 0 0  

e2 = - m  ~ z - ~/~,o / (~(Y) - ~(y - h)) eu. 
~ 0 0  
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Integrating system (3.4) taking into account the fact that v I t=o = rl I t=o = s I t=o = 0, we obtain 

o= .=  h " ,  . 

c+ c_ Co c+ C_ 

We will rewrite the integra' Ic ~o dt in the form Ic ~Oldt + Ic ~2dt.  B y ( 3 . 5 ) , d x = ( v o  + a o )  dt, along the C+- 
characteristic, and hence . . . 

i : dx a~o los a~s(t,z) 
r dt = ~1 vo + a"'--"~ = 7vo(vo + ao) ~ dz = 7vo(vo + ao) '  

6'+ ~+ ~+ 

(3.6) 

where we have used the fact that s(0, ~+) = 0. Similarly, along the C_-characteristic we obtain 

/ ~ 1  dt= a~s(t,z) 
7 v o ( v o - a o ) "  

C_ 
(3.7) 

Substituting the integrals (3.6) and (3.7) into Ic ~o dt, we obtain 
• 

,s 

v = 7(M 2 - 1) 2r  ' ao ' 
C+ C_ 

s m ~  f Odt) 
r /=  7(M~ _ 1) 2r 

6:'+ C_ 

s =  7 ( ' 7 -  1)m~ f 0 r-dr m O O _  T~ / f o--dtw 
Co Co 

1 when  0 < x < h ,  

0 = 0 otherwise. 

(3.8) 

We will evaluate the integrals in (3.8) separately for subsonic (M < 1) and supersonic flow of the gas. The pattern 

of the characteristics is shown in Fig. 9 for M < 1. The half-plane - oo < x < + co, t > 0 is divided by the lines F i into 
13 regions f~i. The equations for r i a r e  identical with the corresponding characteristics (3.5): 

F I :  z = ( t o - a o ) t ,  F2: x=(vo-ao)t+h, 
F3: X = vot, F4: x = vot + h, 
Fs:  z = ( v o + a o ) t ,  F6:  z = ( v o + a o ) t + h ,  
F r :  x = 0 ,  Fs :  x=h. 

The points of intersection of the straight lines P i have the coordinates 

h M), t a = h (XA = ~(I + ~-'~), ( z B = h M ,  tB = h) ,  

h h 
(=c = o, t c  = - - ) ,  (=D = h, tD = ), 

ao - vo ao + vo 

(zE = h(l+M), tE= ~ ) ,  (zr =h, tF= h) ,  
ao yo 

tA < tD < tB = tE < tF < t o .  
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We will construct, as an example, the solution in 93. Choosing the point G with coordinates x, t, we will evaluate the 

integrals in (3.8). We will denote by t 1 the instant when the characteristic C O intersects the straight line x = 0; we then have 

f odt  t - t l  x feat = 
T T "UoT W u o w  

Co Co 

Substituting these values into (3.8) we obtain 

s = 7(7 - l)m~ - m~ - T~ z 
VoT T o ] vow 

in f~3-  
(3.9) 

The integrals along C+ and C _  have the form 

f o dt t - t2 z f dt t - -  t3 h - x 
r r (V0 + ao)V' 0 = = r ( a o  - re)T" 

C+ C_ 

Substituting these integrals into (3.8) and taking (3.9) into account we obtain 

v '=  m~ + m~ 2 m ~  A T  (3.10) 
2 r ( 1 -  M) v(1--  M 2) 7 w ( 1 -  M 2) T ~  

o TO; M < 1. The integrals in the remaining regions 9 i are evaluated similarly. As a result we obtain for where AT = T t -  

the velocity v '  
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. 

, �9 ) 
v = -  2r  t +  in i l l ,  

ao- -vo  

v '= rn~ M in I22, 
2r  1 - M  

v' m~ M m~~ - I )M 2 
= 2~ 1+----U + ~ : - - i a - ~  H m n, ,  

r m~ M m~ ~, , - h  
= 2~ 1+----~ + ~ : ~  ~t -  70 ) in .~ ,  

v '= m~ M in fls, 
27- I + M  

v' = m~176 (t x - h )  
-- 2r  VOTr~O, in 12,, 

0 t I M2H \ 

v' re~176 (t + z._____z__.) m~ - 1 )zM2g 
= 2r  v o + a o  + r ( 1 - M  s) in f~9, 

v' m~176  z ) m~176  in n ,o ,  
= -  2r vo + ao + r ( 1 - M  2) 

h - z m~ - 1)tM 2 v' m ~ 1 7 6  ) +  1[ in fill ,  
= - -  27" ~ r ( 1 - M  2) 

r m~%o ( h - = m % o ( ~  - I ) M  ~ , h - 

- 3-;. ,~+~o--V~) + . . . . .  .~ ~,+ ) "  ~. ~,~, r ( 1 -  M ) ro 

v' m~ M m~ 2 m ~  1)tM 2 
= 27- 1 ~  + 7-(1 - M 2) + 7"(1 - M 2) H in O13, 

r A T  vo 
~ = 1 -  (7_1)~roM ~, M=--<l,ao A T = T ~ 1 7 6  

(3.11) 

It follows from Fig. 9 and Eq. (3.t0) that when t > t c the flow of gas in the cloud will be steady and a dv' /dx > 

In Fig. 10 we show the qualitative relationship v'(x) for a fixed instant t, drawn from Eqs. (3.10) and (3.11) (the 

vertical line represents the right-hand boundary of  the cloud). It can be seen that v'(x) agrees qualitatively with the calculated 

value. An exception is the region 124 where v '  > 0. However, as will be shown below, the value of v'(x) in this region is small 

and does not exceed 0.5% of v o. The occurrence of v'  > 0 is due to the effect of entropy, the contribution of which to v ' ,  

by (3.8), is Av ' /v  o = s/(7(1 - -  M2)) > 0. A more accurate calculation of the heat exchange with the particles and the warm-up 

due to friction obviously leads to a reduction in v'(x) in 124- 

We will estimate the amplitude of the compression wave v o' and the value o f  v l ' ,  equal to v'  in ~4 (Fig. 10). 
o 

Substituting into r = 4/3 d/(CdV0), w = d R e  Pr/6voTNu the values Re = dv0/v, "y = 1.4, AT/T 1 --- 0.5, M = 0.81, Nu --- 

0.6Re 1/2, Pr --- 0.66, d = 400 gm and v = 0.15 cmX/sec, we obtain v l ' /v  o = 0.5%, Vo'/V o --- 4%. According to the 

numerical calculatiofi presented in Fig. 2 the ratio Vo'/V o --= 6.1%, which agrees with the above estimate. 

In the case of supersonic flow (M o = 4.5, M 1 = 1.77) the pattern of the characteristics has a different qualitative form 

(Fig. 11) where F3, 1,4 are identical with C_,  r s ,  1" 6 are identical with C+,  and 1,7, 1"8 are identical with C o. The C_-  
characteristics do not fall in the region to the left of the cloud, and hence the flow there remains unperturbed. The region of 

the solution is divided into thirteen subregions, separated by the straight lines 1"i, which are described by the equations 

F I :  x = O ,  F2 : z - h ,  
F3:  x = ( v o - a o ) t ,  F4: x = ( v o - a o ) t + h ,  
Fs :  x = (vo + ao)t, Fs :  z = (vo + ao)t + h, 
Fr : x = vot, Fs :  z = v o t + h .  
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The points of intersection of the straight lines r i are as follows: 

t A ~ - -  

h h h 
, t B  = - -  t c  = - -  

VO -- ao Vo -]- ao ' 2ao 

h h h 
tD = ~ ,  tE  = - - ,  $F = ~ .  

ao vo ao 

Since M = v0/a o > 1, the following inequalities hold: 

tB < t c  < tE < tD = tF < tA. 

The solution in the regions f~i is found from (3.8) and is constructed in the same way as (3.10). The sole difference is the fact 
that in this case we can neglect the heat exchange between the gas and the particles. (As an estimate shows, the increase in the 
entropy s due to friction, proportional to M 2, considerably exceeds the reduction in s due to heat exchange.) As a result, the 
solution in the regions f~i has the form 
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mOx 7M 2 
vt = " r M 2 - 1  in ill,  

v I =  m~ 7M2 in f12, 
r M 2 - 1 

m ~ 7M 2 tvo z M  
v'= ---~---(h~'-~- i" + 2 2(M 7 1)') in ~'~3, 

v ' = -  m ~  hM 1" hM2 \ 
r \2 (M + 1) + (7 - ) ~ " ~ ' )  in Q4, 

v' = m~ ((7_-._- 1)M2(tvo + h - z) + hM --;-~ M 2 - 1 2(M + 1------5) i. ~5 ,  

vl = m~ M in f16, 
2r  M + I  

m~ / M / z tvo~ 
v ' =  - 2~ ( f i -Z- - f (  1 - -~) + T ,  ~n ~,, 

v ' =  --m~ + (~1 "~ 1)M2")-I / in Qs, 

v' m ~  - 1)M 2 Mx ,) 
= - ~ - r \  Tvl2--1 - t v o + t v o + ~ - - ~ /  in ftg, 

v' m~ ( 2(7 - 1)M2 NIx ] 

v' m ~ (2(7 - 1)M 2 2hM 2 Mx 
=-V~ ~ - ]  ('~176 .~i--1) 

v ' : - L ~ ( , , o ( I +  - 1  ' l ( Z - h ) )  in Q,2, 

v' m ~ ,2(7  - 1)M 2 M 
= - ~ r  ~ fvl~ ~ i  (tv~ + h - z )  + tv~ + ,~-T-'+-l (h - z ) )  in 

M = vo > 1. 
a 0  

ill ~'~1 1 �9 

1"21.3, 

(3.12) 

In Fig. 12 we show the qualitative relationship v'(x) at the instants of time q,  t2, tl < t2 (see Fig. 11). It can be seen 

that the value of v '  in the cloud decreases with time (the gas is slowed down), until, when t > t A, a steady flow is established 

with a constant negative gradient dv/dx < 0. Outside the cloud the flow remains unsteady. 

We will obtain the change in the Mach number in the cloud in the case of steady flow when t > tA: 

M v' a'  vo (3.13) 
- - = 1 + - - - - -  M o = - - .  
Mo vo ao ' go 

Here, compared with (3.12) we have introduced new notation for the quantity M o = __ ,  v~ and a '  is the perturbation of the 
a0 

~ e ~ c i t y ~ f ~ u n d a = a ~ + a ' . F r ~ m t h e e q u a t i ~ n ~ s t a t e ~ f ~ n i d e a ~ g a s p = B p ~ y e x p ( S ~ c v ) a n d t h e f ~ r m u ~ a a 2 = [ ~ - p p ]  s 

we obtain the following expression for a ' :  

a I s 7 - 1 (3.14) 

as = ~ + -~ - - '1"  
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The relations ~(x) and s(x) are found from (3.8): 

77="/ - -  
ra~ Mo 2 
rvo M~ - 1 ' 

o 2 (3 .15)  
s = 7(3' - 1) m2M~ 

*3or 

Substituting (3.12), (3.14) and (3.15) into (3.13) we obtain 

M m~ "rM~ ( 1 +  7 -  1Mo2 ) (3.16) 
M o  = i , , , o  2 " 

Differentiating (3.16) with respect to x we obtain 

dM ra~ 7M~ (1 7 - 1 M 2 ~ .  
d---~ = rvo Mg - ' - ~ 1  ~ + 2 - o/ 

The formula obtained is identical with the expression for dM/dx for the steady flow of a gas in a tube of  constant cross section 

when there is friction [4]. 

The interaction between a shock-wave and a cloud of particles was investigated experimentally in [5, 6] for the same 

parameters of  the gas and the particles as in this paper. The relative Mach number M12 = Iv 1 - -  v2l/a was measured on the 

left-hand and right-hand boundaries of the cloud. The experimental results at the instant t = 40 ~sec are represented in Fig. 

13 by the vertical lines, which indicate the spread in the experimental measurements. The spread arises due to the poly- 

dispersed nature and nonuniformity of  the distribution of the particles in the cloud. The results of  the numerical solution of 

the system of equations (1.1) are represented in Fig. 13 by the continuous curves: curve 1 corresponds to the fraction d 1 = 

170/xm, curve 2 corresponds to the fraction d 2 = 400/zm, and curve 3 corresponds to the fraction d 3 = 500/zm. The dashed 

curves represent the results obtained using the formula 

3 
A. I =  XM,, = Mo.  

i=I 

2 i = (t) (2) where M(m ), d i, x) is calculated from (3.16) with 3' = 1.4, C d = 0.8, M 0 1.68, m 2 = 5-10 -4, d t = 170/~m, m 2 = 
10 -3,  d 2 = 400/zm, m(23) = 5.10 -4,  and d 3 = 500/zm. It can be seen that the numerical and analytic solutions satisfactorily 

describe the experimental results. 

R E F E R E N C E S  

. 

2. 

S. P. Kiselev, G. A. Ruev, A. P. Trunev, et al., Shock-Wave Processes in Two-Component and Two-Phase Media 

[in Russian], Nauka, Novosibirsk (1992). 

S. P. Kiselev and V. M. Fomin, "A continuous-discrete model for gas-solid particle mixtures for a low volume 

concentration of  the particles," Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 93-101 (1986). 

164 



. 

4. 
5. 

6. 

V. P. Kiselev, S. P. Kiselev, and V. M. Fomin, "The interaction between a shock wave and a cloud of particles of 
finite dimensions," Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 26-37 (1994). 
L. G. Loitsyanskii, Fluid and Gas Mechanics [in Russian], Nauka, Moscow (1970). 
V. M. Boiko, A. N. Papyrin, and S. V. Poplavskii, "The mechanism by which dust ignites in passing shock-wave," 
Fiz. Goveniya Vznyva, No. 3, 143-148 (1993). 

S. V. Poplavskii, "Investigation of the nonstationary interaction between shock-wave and dust-gas mixtures," Candidate 
Dissertation, Novosibirsk (1992). 

165 


